
Int. J. Multiphase Flow, Vol. 2, pp. 153-169. Pergamon/Elsevier, 1975. Printed in Great Britain 

L A M I N A R  J E T  C O N T R A C T I O N  A N D  

V E L O C I T Y  D I S T R I B U T I O N  IN 

I M M I S C I B L E  L I Q U I D - L I Q U I D  S Y S T E M S  

H. Yut and G. F. SCHEELE 
School of Chemical Engineering, Cornell University, Ithaca, NY 14850, U.S.A. 

(Received 12 August 1974) 

Abstract--The flow behavior of a Newtonian liquid jet injected vertically into an immiscible Newtonian liquid 
phase is analyzed. Boundary-layer type approximations are used to simplify the general equations, and an 
approximate momentum-integral type numerical solution is obtained. This solution predicts the velocity 
distribution in each phase and the jet radius. The effects on jet behavior of the five dimensionless groups 
needed to characterize the gravitational, interfacial tension and viscous forces are shown. In particular the 
importance of the continuous phase viscosity is demonstrated. Experimental measurements of jet radius 
confirm the essential features of the analysis and illustrate the shortcomings of the approximate solution. 

I N T R O D U C T I O N  

One important technique for creating the large interfacial area required for liquid-liquid 
extraction and direct contact heat exchange is the injection of one liquid through a nozzle or 
orifice into a second immiscible liquid. At sufficiently large injection velocities, the formation of 
discrete drops results from laminar jet breakup caused by the amplification of initially small 
disturbances to which the jet is inherently unstable. 

Meister & Scheele (1969b) have coupled stability theory with the requirement that the 
disturbances travel at the same velocity as the jet surface to obtain an equation for predicting the 
size of drops formed from a Newtonian jet injected into a second Newtonian liquid. The equation 
requires knowledge of the jet radius, the surface velocity, and the disturbance wave number 
which in turn depends on the velocity distribution in the jet. Improved prediction of these 
variables is necessary if drop sizes are to be calculated with reasonable accuracy. 

Several approximate solutions exist for prediction of jet velocity distributions in liquid-liquid 
systems. The steady state distribution obtained by Garner et al. (1959) by neglecting inertial terms 
in the equations of motion is not applicable since breakup normally occurs long before steady 
state is attained. Vandegrift (1963) assumed a form for the velocity distribution in each phase and 
evaluated the undetermined coefficients from boundary conditions. The major objection to this 
analysis is that it predicts jet expansion in many cases where contraction is observed 
experimentally, a consequence primarily of the choice and approximate nature of some of the 
boundary conditions. Meister & Scheele (1969a) modified Vandegrift's approach by superimpos- 
ing the jet radius obtained from the simplified dispersed phase momentum balance of Shiftier 
(1965) onto the velocity profiles obtained from a consideration of viscous forces. The results 
show distinct improvement over Vandegrift's predictions for jet radius and also show reasonable 
agreement with very limited interfacial velocity data. However, there are several unsatisfactory 
features of the analysis. For example, viscous forces are neglected in predicting the jet radius, 
and no attempt is made to have the continuous phase satisfy continuity or the equations of 
motion. 

Although no completely satisfactory analysis of jet behavior presently exists for liquid-liquid 
systems, an excellent analysis of the fluid mechanics of a laminar liquid jet in a gaseous 
continuous phase has been presented by Duda & Vrentas (1967). This case is simpler than the 
liquid-liquid one because the continuous phase can be neglected, but it still presents formidable 
mathematical difficulties. Duda & Vrentas used a novel coordinate system to overcome 
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problems associated with the free boundary. They present the elliptic partial differential 
equations describing jet behavior and obtain numerical and approximate analytical solutions 
valid for large Reynolds numbers which show excellent agreement with experimental data. At 
high Reynolds numbers only two dimensionless groups, the Weber number and the ratio of the 
Reynolds and Froude numbers, are needed to define jet behavior. 

The results of Duda & Vrentas are not directly applicable to liquid-liquid systems because 
they do not include the effects of continuous phase density and viscosity on jet behavior. The 
buoyant effect plays a significant role in determining jet contraction, while the viscous effect is 
important in determining the jet velocity distribution. Buoyancy, which can be readily 
incorporated into the gravitational force term of the dispersed phase equation of motion through 
modification of the interracial boundary condition for the pressure differential between dispersed 
and continuous phases, does not complicate the analysis of Duda & Vrentas. However, a 
viscous continuous phase significantly increases the complexity, since simultaneous solution of 
the equations of motion for both liquid phases becomes necessary. 

The present paper uses the dispersed phase analysis of Duda & Vrentas as a starting point 
for the formulation of the equations and boundary conditions necessary to predict laminar jet 
behavior in immiscible Newtonian liquid-liquid systems. The complexity of the resulting 
equations makes any exact solution impractical. Instead, an approximate numerical solution is 
obtained which shows not only the effects of the various physical parameters but also their 
relative importance. 

F O R M U L A T I O N  OF EQUATIONS 

Consider the steady laminar injection of an incompressible Newtonian liquid through a long 
vertical nozzle of circular cross section into a second immiscible and incompressible Newtonian 
liquid. Assume that the nozzle tip is surrounded by a circular flat plate of infinite radial extent, 
which simplifies the continuous phase boundary conditions. A diagram of the model geometry is 
shown in figure 1. The nozzle is sufficiently long that a fully developed parabolic velocity profile 
exists at the nozzle exit. The flow system is isothermal, and the phases are mutually saturated so 
that there is no interphase mass transfer. Symmetry is assumed in the azimuthal direction and the 
velocity in this direction is everywhere set equal to zero. In order to determine the flow 
characteristics of the jet, the continuity and motion equations have to be formulated for both 
phases and solved simultaneously. The solution will be valid only in the initial disturbance-free 
portion of the jet. In the analysis that follows all position coordinates and velocities are 
nondimensionalized using the nozzle radius Ro and the jet average axial velocity Ua within the 
nozzle. 

TO -~ 
I N F I N I T Y  

I 
1- 
I 

rR° 

I 
R , I  F- 

I 
I 

DISPERSED 
PHASE 

CONTINUOUS 
PHASE 

TO 
~'~ I N F I N I T Y  

CIRCULAR 
PLATE 

NOZZLE 

Figure 1. Geometry of the theoretical model. 
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Dispersed phase 
In order to overcome the mathematical difficulties associated with the free jet boundary, it is 

convenient to adopt the nonorthogonal Protean coordinate system presented by Duda & Vrentas 
(1967) for analyzing jet flow in an inviscid continuous fluid phase. The significant feature of this 
coordinate system is that one of the coordinate lines is a streamline, so that the surface of the jet 
is uniquely defined by the dimensionless stream function W = 1/2. The Jacobian of transformation 
relating the dimensionless Protean coordinates £'  = * ,  £5= 0, £3= ~ to the dimensionless 
cylindrical coordinates x I = r, x 2 = 0, x 3 = z can be written as 

£i ri3 0 -rvl 
Ox' = 1 0 

0 1 
[1] 

Additional details of the coordinate system are given by Duda & Vrentas (1967) and Yu (1971). 
The one change from the coordinate system used by Duda and Vrentas is the direction of ~, 

which is taken opposite the direction of gravity so that the equations as written are valid for 
injection vertically upward. 

Duda & Vrentas present the dimensionless differential equations which are obtained from 
the equations of motion in the ~ and • directions. They show, by using an order of magnitude 
analysis, that for nozzle Reynolds numbers larger than about 200 the equations are significantly 
simplified, reducing to 

OU 1 1 OP 2 [ - -  OU 2 - / O U \  2 2- 202U'1 
U - ~ =  2Nv, pU~ 2 ff~+N-~R~[2O-ff-~ + r  O~-ff-~) + r  U ~--~-~] [2] 

OP 
T ~  = 0, [31 

where U is the dimensionless axial velocity. The Froude number Npr is U~2/2 Rog and the 
dispersed phase Reynolds number NRe is 2Ro pUa/tz, where p and g are the dispersed phase 
density and viscosity. Equation [2] differs from Duda & Vrentas' equation [79] only in the sign 
change on the Froude number term which results from inversion of the coordinate system. The 
approximation given by [3] makes it possible to relate the pressure distribution P(~) directly to 
the continuous phase pressure distribution by using an interfacial boundary condition. 

Two additional dispersed phase relationships, which can be obtained from [1], are 

Or 1 
0----~=r---~, [41 

which relates the radial coordinate r to the Protean coordinate ~,  and 

Or V 
o~ U' [5] 

which is needed to calculate the dimensionless radial velocity V. Equations [4] and [5] are 
identical to Duda & Vrentas' equations [35] and [36]. 

Continuous phase 
The presence of a liquid continuous phase significantly complicates the analysis. For a 

gaseous continuous phase Duda & Vrentas were able to assume an inviscid fluid of constant 
pressure, but such simplifications are not possible for a liquid. 

It is more convenient to use the cylindrical coordinate system for the continuous phase 



156 H. YU and G. F. SCHEELE 

equations, because in Protean coordinates the continuous phase streamlines become essentially 
perpendicular to the nozzle in the region near the nozzle tip. The superscript ° is used to 
distinguish continuous phase from dispersed phase variables. 

For an axially symmetrical flow the dimensionless continuity equation is 

1 0 o +OU °_ 
r ~(rV ) --~-z - O. [6] 

The z-component of the equation of motion is 

voO _ +uo  ° 1 oP° A_rl O(rOU° 02U 0] gRo 
p°U=. Oz NR,oLrO-r\ -~r / +  Oz 2 _l U. 2' [71 

and the r-component is 

vo_O_~_+uoOV ° 1 OP°F 2 f o r 1  O o~+O~V° 1 
O---z:-p°U. 2 Or ~ t ~ r [ r  ~r (rV )J o~ ~ j,  t8] 

where the continuous phase Reynolds number NRe° is defined as 

NReo = 2Ro Uop °/tz o. [9] 

To simplify [7] and [8] a boundary layer analysis similar to that used by Sakiadis (1961) and by 
Vasudevan & Middleman (1970) to predict axisymmetric boundary layer growth in the direction 
of motion on a continuous cylindrical solid surface is employed. The previous results cannot be 
applied directly to laminar liquid jets because contraction and the relaxation of the interfacial 
velocity were not considered. 

For continuous phase Reynolds numbers greater than about 100, Yu (1971) has shown from an 
order of magnitude analysis that within the boundary layer [7] and [8] are simplified to 

and 

vo  + uoOU _ 1 oPO 2_L_r!±(rOUO ] gRo 
Oz p°U, 2 Oz NR,.Lr Or\ Or /.I U, 2' [10] 

Op ° 
- - = 0 .  [11] 
Or 

P° can thus be evaluated from the z component of the equation of motion external to the 
boundary layer, which reduces to 

Op ° 
az = - p °gRo. [ 12] 

Substitution of [12] into [10] gives finally 

Oz NR,°Lr Or\ Or /_1" [13] 

It should be noted that in the region near the nozzle tip the continuous phase streamlines are 
essentially perpendicular to the jet. The flow conditions near the nozzle are thus different from 
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those treated in most boundary layer analyses. Specifically, the radial velocity component may be 
sufficiently large that [11] is not satisfied. 

Interface 
The interfacial equations of motion used 6y Duda & Vrentas require modification since the 

viscous stresses associated with the continuous phase must be incorporated into the equations. 
For Newtonian fluids the q~ component of the equation of motion can be written in 

dimensionless form as 

P - P °  4 (1-1~°I Ix ) [V .  U 2 0 U .  U V o _ ~ +  2 [ U 2 0 V  U V o U  U)  
pU2 ~ . . . .  -,----r--~- NR, ~r q 0~ -~- -~- ]  N-~-w,\-q x 3~ q3 0~: ~q =0, [14] 

where the Weber number Nw, is 2Ro Ua 2 p/tr and tr is the interfacial tension. Similarly, the ~ and 
components can be combined, eliminating the pressure term, to obtain the dimensionless 

equation 

where 

[rq 2 OUX o/rq 2 OU°\ + /zo)( W - ¢  ) - [--¢ ) - 

UOV 2U 20U 2UVOV~ OU V~ q2 =0, [15] 
a~: r va~: a~ q~ a~:} 

q = (U 2 + V2) '/2. [16] 

For an inviscid continuous phase /~°= 0, and [14] and [15] reduce to equations [73] and [72] 
presented by Duda & Vrentas (1967). 

For large dispersed phase Reynolds numbers, an order of magnitude analysis reduces [15] to 

and [14] to 

OU i~o OU° /~-~---~= ~ at ~F=1/2, [17] 

P - P° 2 4(1 - ~°1~) oU 
at ~ =  1/2, [18] 

pUa 2 = RNwe NRe 3~ 

where R is the dimensionless jet radius. In order to simplify the computations, the analysis in this 
study is limited to cases where NR, / (1 -  i~°ll~) is sufficiently large that [18] reduces to 

p _ p o  2 
pUa 2 = RNw, " [19] 

Shiftier (1965) incorrectly used the expression (P - P°)/pUa2 = 4/RNw, in deriving his equation 
for jet radius, and Meister & Scheele (1969a) incorporated the resulting incorrect equation into 
their velocity profile analysis. 

Equation [11] shows that the radial pressure gradient within the boundary layer is negligible. It 
follows directly that within the boundary layer 0P°10~1, = OP°I Oz It, except perhaps in the region 
close to the nozzle tip where [11] may not be valid. Equations [19] and [12] can then be used to 
eliminate the pressure from [2], giving 

UO___U= 1 1 dR2 ~-NR-~R, 2V-b--~+ + 
0¢ 2NF-----~ - 1  + R3Nw, d~ r u ~ - ~  ] . [20] 

Equation [20] differs from the dispersed phase momentum balance obtained by Duda & Vrentas 
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for a gaseous continuous phase only in the addition of the factor [(p°/p) - 1] to the gravity force 
term. For injection vertically downward the appropriate factor is [1-  (p°/p)]. 

It is convenient for computational purposes to introduce a new dimensionless axial variable 

= , ~ I N R ,  = zlNRe. [21] 

Equation [1] shows the equivalence of ~: and z. Equation [20] then becomes 

where 

OU Nj 1 dR z [ OU 2 (OU) 2 2.TzozU] 
u T (  = y + R 3 Uw" d -+2 2 V-g-4 + r U + r j , 

.,, : N 4 .  ° -  
\ p  

[22] 

[23] 

Nj is a generalized buoyancy parameter consistent with the definition N~ = NR,/Nvr used by Duda 
& Vrentas for injection vertically downward into a zero-density continuous phase. 

If the viscous terms are neglected and the velocity profile is assumed fiat, [20] can be 
integrated to obtain the relationship between jet radius and distance from the nozzle first 
presented by Addison & Elliott (1949, 1950) for liquid-gas systems. Shiftier extended the analysis 

to liquid-liquid systems to obtain 

1 1 1)] 1) 4 , [24] 

Using the dimensionless axial coordinate defined by [21], [5], [6] and [13] become 

1 Or V 
NR, a~r U' [25] 

1 0  1 o U  ° 
- - -  ( r V  °) -+ - -  - -  = 0 ,  [ 2 6 ]  
r Or NR, c9~ 

v o a U ° +  u ° a u  ° 2 
ar NR, a~ - NRe°L r ar \ ar / / "  [27] 

Note that the partial derivatives with respect to ff are evaluated at constant • in [22] and [25] and 

at constant r in [26] and [27]. 
Equations [4], [22], [25], [26] and [27] form the set of simultaneous non-linear differential 

equations needed to obtain the dispersed and continuous phase velocity distributions and the jet 
radius. In principle a finite difference solution can be obtained, as Duda and Vrentas showed for 
the case where the continuous phase can be neglected. However, consideration of the continuous 
phase made such calculations so lengthy that they were considered impractical for the present 

study. 

APPROXIMATE SOLUTION 

To reduce computation time, an integral approach paralleling the momentum integral method 
for boundary layer flows is adopted. Velocity distributions containing undetermined coefficients 
which are functions only of axial position are postulated for both phases. This reduces the set of 
partial differential equations to ordinary differential equations with ~ the independent variable. 
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The coefficients are evaluated by making the distributions satisfy the initial and boundary 
conditions, as well as integrated continuity and momentum equations. 

Assumed velocity distributions 

It is assumed that the dispersed phase axial velocity distribution can be approximated by 

U = U.X/(1 - B ~ ) ,  [28] 

where Uc, the center-line velocity, and B are functions only of ~. Equation [28] is the simplest 
distribution consistent with the initial parabolic profile existing at the nozzle exit, for which 
Uc = 2 and B = 2. It is also consistent with the steady-state parabolic distribution obtained by 
Garner et al. (1959) for an infinitely long jet. However, it predicts that for an inviscid continuous 
phase U -- Uc for all ~" > 0, which is inconsistent with the more rigorous results of Duda and 
Vrentas which show that the profile does not relax instantaneously. 

When [28] is substituted into [4] and the result integrated, the relationship between r and xI, 
within the jet becomes 

r= = U - - ~  [1 - X/(1 - Bqt) ] ,  
c 

[29] 

so that the jet radius is given by 

R~ = U--~ [1 - X/(1 - B/2]]. [301 

The radial velocity distribution within the jet can also be expressed in terms of Uc and B by 
substituting [28] and [29] into [25]: 

1__1- 1 '21-  , ~//2 -~ 
V = N R ,  L B [ 1 - N / ( 1 - B g t ) ] J  L\x/(1 - BXl/) B /d~" Uc ] - ~ J "  

[31] 

Since [26] and [27] are coupled, distributions are assumed for both continuous phase velocity 
components, 

U ° = (A + Cr z) In [r/(R + 8)], [32] 

V ° = (E + Fr 2) In [r/(R + 8)], [33] 

where 8, the dimensionless thickness of the boundary layer as measured from the jet surface, and 
the coefficients A, C, E and F are functions only of ~'. Equations [32] and [33] satisfy the 
condition that the velocities become zero at the edge of the boundary layer r = R + 8. 

Method of  solution 

The assumed velocity distributions contain seven undetermined coefficients, tic, 8, A, B, C, E 
and F. Four boundary conditions and three integral equations are used to obtain the necessary 
relationships for determining the coefficients. 

The first two boundary conditions are continuity of axial and radial velocities at the interface, 
namely U = U  °and V = V  °at  r = R .  

The third condition is interfacial continuity of shear stress approximated by [17], and the final 
boundary condition is OU°/Or = 0 at the edge of the boundary layer r = R + 8. 

The integral equations are the dispersed phase equation of motion, obtained by integrating 
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[22] from • = 0 to • = 1/2, and the continuous phase continuity and motion equations, obtained 

by integrating [26] and [27], respectively, from r = R to r = R + & 

Since the calculation scheme involves a marching procedure in the axial direction starting at 

the nozzle exit, initial values of the undetermined coefficients are required. For a fully developed 

parabolic velocity profile exiting from the nozzle, Uc = 2 and B = 2. For  the continuous phase, 

the injection geometry requires that U ° and V ° = 0  at ~ '=0  for all r>-R. Thus 

A = C = E = F = 0. Finally, by definition the boundary layer thickness ~ = 0. It cannot be 

emphasized too strongly that these initial parameter values are specific to the present study. 

The four algebraic equations obtained from the boundary conditions and the three ordinary 

differential equations obtained from the integral relationships are presented by Yu (1971). A 

numerical solution is necessary because of the non-linearity of the equations. The differential 

equations were converted to finite difference form using a backward difference form to 

approximate derivatives. The set of simultaneous non-linear algebraic equations was then solved 

using a computational scheme developed by Brown & Samuel (1967). Solution details, including a 

computer program, are also presented by Yu. Computer time on an IBM 360-65 was about 1 

minute per system. 

DISCUSSION OF NUMERICAL RESULTS 

The analysis shows that the dimensionless velocity distributions and jet radius are functions 

of the axial distance ~" from the nozzle and five dimensionless groups. Two of these, the 

buoyancy parameter N~ and the Weber number Nwe, are sufficient to characterize a jet in an 

inviscid medium. Three additional dimensionless groups, the dispersed and continuous phase 

Reynolds numbers NRe and NReo and the viscosity ratio/~[/z °, are needed when the continuous 

phase viscosity is not negligible. 

Numerical studies 

Numerical solutions were obtained for ten jet flows. The dimensionless parameters 

characterizing these flows are summarized in table 1. Also tabulated are two additional 

dimensionless groups, the density ratio p°/p and the Froude number Npr, which are uniquely 

determined by the specified dimensionless numbers. 

Case 1 is the base case, selected to have the same N~ and Nw, values as the vertical jet 

calculated by Duda and Vrentas. A viscosity ratio of 1.0 and a density ratio of 2.0 were selected 

as values typical of many liquid-liquid systems. 

The other cases were selected to provide a reasonable variation in each of the five 

dimensionless groups, subject to the constraint that both Reynolds numbers be sufficiently large 

to justify the order-of-magnitude simplifications made in the equations of motion. The jet 

Reynolds number was further restricted to laminar flow values. Emphasis was placed on using 

values characteristic of real injection systems. 

Table 1. Summary of cases analyzed 

Case Nj Nwe N., NR,o ~1~ ° p°lp N~r d~ 

1 128.5 5.4 835 1670 1.0 2.0 6.5 0.0005 
2 t 54 .0  . . . . .  0.0005 
3 --  0.54 . . . . .  0.001 
4 --  - -  1653 - -  --  1.01 0.1286 0.0005 
5 --  - -  165.3 - -  - -  10.1 11.70 0.003 
6 --  - -  --  4217 --  5.05 26.3 0.003 
7 --  - -  --  843 --  1.01 0.065 0.0005 
8 . . . .  1.98 1.01 0.065 0.001 
9 . . . .  0.198 I0.1 59.13 0.003 
10 12'85 . . . . . .  65 0.002 

tWhere not indicated otherwise, parameter values are those of base Case 1. 
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Table 1 also shows the axial step size ds r used in the numerical computations. Step sizes 
greater than 0.0005 were used only when numerical instabilities were encountered. The effect of 
step size on calculated results was determined for case 8 by using d~" values of 0.001 and 0.003. 
The effect was greatest near the nozzle. For example, at ~" = 0.006 the interracial axial velocity 
increased approximately 5% as the step size was reduced 3-fold, while at ~" = 0.027 the increase 
was only about 1%. At both axial locations a 3-fold reduction in step size increased the center-line 
velocity less than 0.3% and reduced the jet radius less than 0.7%. This agreement was considered 
satisfactory for the present study. 

The numerical results are summarized in figures 2-12. 

Jet relaxation and m o m e n t u m  change 

The effect of the dimensionless parameters can best be explained by first considering the two 
factors which determine jet behavior, namely the relaxation of the initially parabolic profile and 
the change in jet momentum produced by the surface and body forces acting on the jet. 

When a jet issues from a nozzle, momentum exchange with the core of the jet causes 
acceleration of the surface fluid. The rate of momentum exchange and hence velocity profile 
relaxation is greatest near the nozzle where velocity gradients are largest. In the limit that no 
forces act on the jet, conservation of momentum requires that the radius of a jet with an initially 
parabolic velocity distribution satisfy the equation 

R 2 = 3 kJ4 ,  [341 

where k, is the ratio of jet momentum to the momentum associated with a plug flow jet of 
equivalent radius. Since kl is a function of the jet velocity distribution, decreasing from its initial 
value of 4/3 as the profile relaxes, jet contraction accompanies profile relaxation. The asymptotic 
minimum radius predicted by [34] for a fully relaxed jet is R = 0.866, a value which should 
closely approximate the final radius of a high Weber number jet injected horizontally into an 
essentially inviscid gas phase. 

The change in jet momentum caused by forces acting on the jet also affects jet behavior. 
Modification of [34] to incorporate a changing jet momentum yields the expression 

R 2 = 3 k,/4 k2, [351 

where k2 is the ratio of downstream to initial momentum. Equation [35] shows that an increase in 

a I I I I I 

_ _ 

CASE I ~ _ _ _ _ ~  

U c 

I - -  

o I I I I I 
1 2 

~ x l O  2 

Figure 2. Dependence of jet centerline velocity on axial length. 
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Figure 3. Effect of viscous continuous phase on jet surface velocity for Nj = 128.5, Nw, = 5.4. 
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2 

U 

I I I I I I 

INVISClD 
/ ~  CONTINUOUS 

PHASE 

_-- ~ I N T E R F A C E  

I I I 
0.2 0.4 0.6 0.8 1.0 1.2 

r 
1.4 

Figure 5. Effect of viscous continuous phase on jet velocity distribution for N~ = 128.5, Nwe = 5.4. 
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Figure 12. Effects of Nj and Nw, on jet surface velocity for NR, = 835, N~,o = 1670, ~/~° = 1.0. 

jet momentum resulting from a force acting in the same direction as the jet motion will increase 
jet contraction, while any force which opposes jet motion will reduce jet contraction. Note that 
jet contraction beyond R = 0.866 is possible when the net force acts in the direction of jet 
motion. Changes in jet velocity will accompany any change in jet radius since continuity must be 
satisfied. 

The interaction of relaxation effects and jet momentum changes can produce three different 
types of flow behavior. Figure 2 shows the axial center-line velocity as a function of axial 
distance for systems 1, 3 and 10. In all three systems the interracial velocity increases with 
distance downstream because of profile relaxation. In system 1 the large increase in jet 
momentum resulting from the upward buoyant force causes the center-line velocity to increase 
with distance downstream even in the region near the nozzle where profile relaxation is largest. 
The radial component of the dispersed phase velocity is everywhere negative. The opposite 
behavior is seen for system 10 where the buoyant force is small. There is a continuous decrease in 
center-line velocity, and the radial velocity is everywhere positive. System 3 shows intermediate 
behavior, with the center-line velocity decreasing initially due to jet relaxation and then increasing 
due to buoyancy effects. 

Viscous effects 
The effect of incorporating the continuous phase viscosity into the analysis is shown in figures 

3-5. Figures 3 and 4 show the interracial velocity U, and jet radius as a function of axial distance 
from the nozzle for case 1, using both the present analysis and the inviscid analysis of Duda and 
Vrentas. Figure 5 compares the axial velocity distributions predicted by the two analysis for case 
1 at the axial location ~" = 0.027, which is 11.2 diameters downstream from the nozzle exit. It can 
be seen that the continuous phase viscosity decreases the interfacial velocity and increases the 
jet radius. The calculated 50% decrease in interracial velocity and 10% increase in jet radius at 
~" = 0.027 illustrate the importance of the continuous phase viscosity. 

The viscosity gives rise to an interracial shear force which opposes jet motion, reducing the 
downstream jet momentum, and which also prevents the jet from fully relaxing to a plug flow 
velocity distribution. The combination of reduced jet momentum and decreased jet relaxation is 
responsible for the decreases in jet contraction and interracial velocity seen in figures 3-5. The 
inviscid analysis of Duda and Vrentas thus provides a lower limit for jet radius. 

Also shown in figure 4 is the jet radius predicted by [24] which neglects both viscous forces 
and jet relaxation. Equation [24] underestimates jet contraction in the region near the nozzle 
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where relaxation is significant and overestimates the contraction downstream where viscous 

forces are important. Because of the compensating nature of these errors, it is possible for [24] to 
give a reasonable prediction of jet radius over a portion of the flow field. 

Three dimensionless parameters must be specified to characterize the effect of viscosity on jet 

behavior. The effects of the viscosity ratio/x//~ ° and the continuous phase Reynolds number NR,° 
on the jet interfacial velocity and radius are shown in figures 6 and 7. For a given dispersed phase 

liquid the jet radius increases and the interfacial velocity decreases as /z ° or NR,° increases. 
Increasing/x ° increases the interracial shear relative to the initial jet momentum and also reduces 
jet relaxation. Similar effects are associated with increasing NR,o because of the decreasing 
thickness of the continuous phase boundary layer. A comparison of the dimensionless boundary 

layer thicknesses for continuous phase Reynolds numbers of 1670 and 4217 is shown in figure 8. 

The third dimensionless parameter characterizing viscous effects is the dispersed phase 
Reynolds number NR,. For an inviscid continuous phase the jet radius dependence on the axial 

position coordinate s r is independent of NR,. Figure 9 shows that for a viscous continuous phase 
an increase in the jet Reynolds number decreases the jet radius at a given ~; accompanying this 
decrease is a corresponding increase in interfacial velocity, as shown in figure 10. 

Figures 6-10 illustrate the important role played by the three dimensionless parameters/~ [/~°, 
NR,. and NR, in characterizing the effect of the continuous phase on jet behavior. 

Buoyancy and interracial tension effects 
Figure 11 shows the effects of buoyant and interfacial tension forces on the calculated jet 

radius. An increase in buoyancy, characterized by an increase in Nj, increases jet momentum and 

hence increases jet contraction. Similarly a decrease in the interfacial tension force, 
characterized by an increase in Nw,, will increase contraction. An increase in surface velocity is 

associated with the increased jet contraction, as seen in figure 12. The curves for N~ = 12.85 
show that a jet may contract to essentially its final diameter long before the velocity profile has 
relaxed completely. These results are consistent with those obtained by Duda and Vrentas for an 

inviscid continuous phase. 
Figures 11 and 12 show that the significance of each force depends on its magnitude relative to 

the total force acting on the jet. For example, the increase in jet radius associated with a 10-fold 
decrease in Nwe from 5.4 to 0.54 is much greater than that associated with a ten-fold decrease in 
Nw, from 54.0 to 5.4 because the interfacial tension force becomes increasingly significant as 

Nwe approaches zero. 

COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENTAL DATA 

Experimental jet radii were measured to test the analysis. The continuous phase was 
contained in a tank 0.762 m high having a 0.305 m square cross section. The dispersed phase 
isst~ed vertically from a 0.61 m long nozzle made of precision bore glass tubing. Nozzle diameters 
of 0.168, 0.251 and 0.427 cm were used, so the minimum nozzle length to diameter ratio was 143, 
sufficient to assure a fully developed parabolic velocity profile at the nozzle tip. Each tip was 
surrounded by a 10.16 cm diameter circular glass disc to approximate the continuous phase initial 

conditions assumed in the analysis, namely U ° = V ° at s r = 0 for all r -> R. 
Jet radii were measured from 35 mm still photograph negatives in the region near the nozzle 

where disturbances on the jet surface were not visible. Each experimental radius represents the 
average of measurements obtained from four photographs. The average deviation of 

measurements from the mean was ---3.5%. 
A series of ten experiments was conducted using either benzene or heptane as the jet phase 

and water as the continuous phase. The systems were mutually saturated to eliminate mass 
transfer effects. The following ranges of parameters were investigated: Nj, 8.5-580.7; Nw,, 
2.1-19£;/z//x °, 0.48-0.78; NRe°, 714-1651; NR,, 802-1855. All systems satisfied the restrictions 
NRe°> 100 and NR, > 200 required to justify the order of magnitude approximations made in the 
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theoretical analysis, as well as the restriction 2/RNwe >>[4(1-~°/~)aUla~]IN~, needed to 
simplify [18]. 

The maximum deviation between measured and theoretical jet radii was 4.7%, and in eight of 
the ten experiments the maximum deviation was less than 3.5%. Since the experimental radii 
have an uncertainty of -3.5%, the deviations are generally within the range of experimental 
accuracy, thus confirming the essential features of the analysis. 

The results shown in figure 13 for three benzene jets injected into water are representative of 
the agreement found between theory and experiment. Although the agreement is within 
experimental accuracy for each jet, the data suggest a tendency for the theory to overestimate jet 
contraction in the region near the nozzle. The data also suggest that in the region far downstream 
from the nozzle the theory becomes less satisfactory as the viscous forces become increasingly 
significant. 

In the region near the nozzle two factors are likely to cause theoretical inaccuracy. First, the 
boundary layer assumptions used in simplifying the continuous phase equations may not be valid 
close to the nozzle. In particular, neglect of the radial pressure gradient may not be a good 
approximation. Second, the assumed velocity distribution given by [28] may be inadequate. 
Velocity profile relaxation plays a significant role in determining jet contraction near the nozzle. 
It has already been pointed out that the distribution is unsatisfactory for an inviscid continuous 
phase, predicting instantaneous relaxation and thereby overestimating the initial rate of jet 
contraction. 

In the region downstream from the nozzle prediction of the viscous force is the most likely 
source of error, not only because the error increases as the viscous force becomes increasingly 
significant but also because the major assumptions in the analysis have their largest effect on the 
interfacial shear. In particular the use of an integral analysis in each phase requires the 
assumptions of equations for the velocity distributions which are unlikely to represent the actual 
profiles accurately. 

Since interfacial shear is affected by the continuous phase boundary layer thickness, a critical 
evaluation of the boundary layer analysis would be useful. This is not possible, because previous 
analyses have been restricted to continuous solid cylindrical surfaces where the cylinder radius 
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Figure 13. Comparison of experimental and theoretical jet radii. 
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and interracial velocity were constant. However, if it is assumed that these analyses can be 
applied locally to a tapering jet with varying interfacial velocity, the boundary layer thickness 
predicted by the present analysis is intermediate between the values predicted by Sakiadis (1961) 
and by Vasudevan & Middleman (1970). Although the continuous phase Reynolds numbers are 
somewhat lower than those normally associated with boundary layer flows, the numerical results 
indicate that the boundary layer assumptions are valid except near the nozzle. 

Experimental velocity distributions would provide a more rigorous test of the theory, but such 

data are not presently available. 

CONCLUSIONS 

The dimensionless continuity and momentum equations describing the flow behavior of a 
laminar liquid jet injected into a second immiscible liquid are complicated by the need to consider 
the viscosity of the continuous phase. While two dimensionless groups, a buoyancy parameter 
and an interfacial tension parameter, completely characterize jet behavior in an inviscid medium, 
three additional dimensionless groups are needed when the external fluid viscosity is not 

negligible. 
To investigate the importance of the continuous phase on jet behavior, an approximate 

solution is obtained. The numerical results show that a finite continuous phase viscosity will 
increase the jet radius in comparison to its thickness in an inviscid fluid. All three dimensionless 
groups which are needed to characterize the viscous effects, namely the viscosity ratio of the two 
phases and the Reynolds numbers of the two phases, can significantly affect both the jet radius 
and velocity distribution. Specifically, the jet radius will increase with an increase in the ratio of 
continuous to dispersed phase viscosity, an increase in the continuous phase Reynolds number, 
or a decrease in the jet Reynolds number. 

Experimental measurements of jet radius confirm the essential features of the analysis. 
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R~sum6----On analyse le comportement d'un jet d'un liquide newtonien, inject6 verticalement dans un liquide 
newtonien non miscible. 

On utilise des approximations du type approximations de la couche limite pour simplifier les 6quations 
#n6rales, et on obtient une solution num6rique approch6e du type ~ int6grale de quantit6 de mouvement. Cette 
solution pr6dit le profil de vitesse dans les deux phases et le rayon du jet. On montre quelles sent les influences sur 
le comportement du jet des cinq hombres adimensionnels n6cessaires pour caract6riser les forces de gravit6, de 
tension superficielle et de viscosit6. On d6montre en particulier rimportance de la viscosit6 de laphase continue. 
Des mesures exp6rimentales de rayon de jet confirment les traits essentiels de l'analyse et illustrent les 
insuflisances de la solution approch6e. 

Auszug----Das Stroemungsverhalten eines vertikal in eine nicht mischbare Phase Newtonscher Fluessigkeit 
eingespritzten Strahles Newtonscher Fluessigkeit wird analysiert. Dutch Grenzschichtannaeherungen werden 
die allgemeinen Gleichungen vereinfacht, und es wird eine angenaeherte numerische Loesung in der Form eines 
Integrals der Bewegungsgroesse erhalten. Diese Loesung erhibt eine Voraussage fuer die Geschwindigkeitsver- 
teihng in beiden Phasen, und fuer den Strahlradius. Fuenf dimensionslose Kennzahlen sind notwendig, um die 
Schwere-, Oberflaechen-, und Zaehigkeitskraefte zu kennzeichnen. Ihr Einfluss auf das Strahlverhalten wird 
aufgezeigt, mit besonderem Hinweis auf die Wichtigkeit der Zaehigkeit der kontinuierlichen Phase. 
Experimentelle Messungen des Strahlradius bestaetigen die Ergebnisse der Analyse in den wesentlichen 
Zuegen, und illustrieren die Grenzen der Angenaeherten Loesung. 

Pe31OMe---AbIaJIH3HpyeTc~I nose~em~e nOTOKaCTpyH HeKOTOpOI~HI, IOTOHHaHCKOfiTKHJIKOCTH 
BHpblCKHBaeMo~ BepTHKa.ribHO B HepaCTBOpHMylO B He~ HblOTOHHaHcKyIo ~KH~KyIO ~ba3y. B 
lleJI.qx ynpoI1~eltHg ypaBHeHHR o f m e r o  a ~ a  HCIIO.rlbByIOTCa rlpH6YtH>KeItH~ TmIa HoBepxHo- 
CTHOrO cries, qeM nonyaeHo qHcaeunoe pemeHHe npH6nHxeHnoro Ilpe~cTaaneHae mtTerpaaa 
MOMCHTa KOYIHtICCTBa ~BHXqeHHIq. TaKoe peineH~Ie npe~cKaabmaeT pacnpe~e~erme CKOpOCTC~ 
B Ka~K~O~t H3 qba3 H paHnyc CTpym HOKa3aHO BYm~IHHe Ha IIOBeReHHC cTpyH ILqTH 6c3pa3Mep- 
HbIX rpyILrl, HeO6XO~HMbIX JLUfl xapaKTepHCTHKH CHH TH)KeCTH, rlOBCpXHOCTHOrO HaT~KCHHg 
H B~I3KOCTH. B qaCTHOCTH noKaaaHa Ba)KHOCTb HCHpepbIBHOCTH qbaaoBo~ Bg3KOCTH. 3KcnCpH- 
MeHTa.rlbHbIe H3MCpeHH~I HO~TBepTK~aIOT B 06LI.[HX ~epTax yKa3aHHt,Ii~ aHaJIH3 n HJIJIIOCTpHpyIoT 
He~oCTaTKH npHSnHXeHHoro t~meHn~. 
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